A note on cyclic semiregular subgroups of some 2-transitive permutation groups

نویسنده

  • M. Giulietti
چکیده

We determine the semi-regular subgroups of the 2-transitive permutation groups PGL(2, n),PSL(2, n),PGU(3, n),PSU(3, n),Sz(n) and Ree(n) with n a suitable power of a prime number p. 2000 Math. Subj. Class.: 14H37

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New constructions of groups without semiregular subgroups

An elusive permutation group is a transitive permutation group with no fixed point free elements of prime order, or equivalently, no nontrivial semiregular subgroups. We provide several new constructions of elusive groups, some of which enable us to build elusive groups with new degrees.

متن کامل

Transitive Permutation Groups without Semiregular Subgroups

A transitive finite permutation group is called elusive if it contains no nontrivial semiregular subgroup. The purpose of the paper is to collect known information about elusive groups. The main results are recursive constructions of elusive permutation groups, using various product operations and affine group constructions. A brief historical introduction and a survey of known elusive groups a...

متن کامل

All vertex-transitive locally-quasiprimitive graphs have a semiregular automorphism

The polycirculant conjecture states that every transitive 2-closed permutation group of degree at least two contains a nonidentity semiregular element, that is, a nontrivial permutation whose cycles all have the same length. This would imply that every vertex-transitive digraph with at least two vertices has a nonidentity semiregular automorphism. In this paper we make substantial progress on t...

متن کامل

All vertex-transitive locally-quasiprimitive graphs

The polycirculant conjecture states that every transitive 2-closed permutation group of degree at least two contains a nonidentity semiregular element, that is, a nontrivial permutation whose cycles all have the same length. This would imply that every vertex-transitive digraph with at least two vertices has a nonidentity semiregular automorphism. In this paper we make substantial progress on t...

متن کامل

Permutation Groups, Vertex-transitive Digraphs and Semiregular Automorphisms

A nonidentity element of a permutation group is said to be semiregular if all of its orbits have the same length. The work in this paper is linked to [6] where the problem of existence of semiregular automorphisms in vertex-transitive digraphs was posed. It was observed there that every vertex-transitive digraph of order pk or mp, where p is a prime, k 1 and m p are positive integers, has a sem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008